Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jan 21 2023 11:51:43
%S 1,0,0,0,-1,-1,0,0,-1,1,0,0,1,0,0,0,0,0,1,0,-1,1,-1,0,1,0,-1,0,1,-2,1,
%T 0,-1,1,1,0,0,1,-2,0,-1,-2,1,0,1,2,1,-1,1,0,-2,1,-1,-2,0,1,0,0,1,-1,1,
%U 1,0,0,-1,-1,1,1,-2,2,0,-2,2,1,-3,0,1,-3,2,2,-1,1
%N Expansion of Product_{k>=0} (1 - x^(k^2+4)) in powers of x.
%H Seiichi Manyama, <a href="/A360001/b360001.txt">Table of n, a(n) for n = 0..10000</a>
%o (PARI) my(N=100, x='x+O('x^N)); Vec(prod(k=0, sqrtint(N), 1-x^(k^2+4)))
%o (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, sumdiv(j, d, issquare(d-4)*d)*v[i-j+1])/i); v;
%Y Cf. A276516, A359936, A359966, A359980, A360002, A360003.
%K sign,look
%O 0,30
%A _Seiichi Manyama_, Jan 21 2023