login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{d|n} tau(d)*phi(d)*mu(n/d).
2

%I #26 May 17 2023 11:13:25

%S 1,1,3,4,7,3,11,10,14,7,19,12,23,11,21,24,31,14,35,28,33,19,43,30,52,

%T 23,54,44,55,21,59,56,57,31,77,56,71,35,69,70,79,33,83,76,98,43,91,72,

%U 114,52,93,92,103,54,133,110,105,55,115,84,119,59,154,128,161,57,131

%N a(n) = Sum_{d|n} tau(d)*phi(d)*mu(n/d).

%C Möbius transform of tau(n)*phi(n) (A062355).

%H Amiram Eldar, <a href="/A359954/b359954.txt">Table of n, a(n) for n = 1..10000</a>

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F Multiplicative with a(p) = 2*p - 3 and a(p^e) = (e*p + p - e)*(p - 1)*p^(e - 2) for e > 1. - _Amiram Eldar_, May 16 2023

%t f[p_, e_] := If[e == 1, 2*p - 3, (e*p + p - e)*(p - 1)*p^(e - 2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, May 16 2023 *)

%o (PARI) a(n) = sumdiv(n, d, numdiv(d)*eulerphi(d)*moebius(n/d)); \\ _Michel Marcus_, May 13 2023

%Y Cf. A000005 (tau), A000010 (phi), A008683 (mu), A062355, A363012.

%K nonn,easy,mult

%O 1,3

%A _Wesley Ivan Hurt_, May 12 2023