Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Jan 19 2024 10:06:08
%S 1,2,4,30,154,1078,7046,50766,364268,2713444,20384884,155954760,
%T 1204192106,9400024042,73945396990,586088682472,4673927031694,
%U 37484566094970,302098932029282,2445538771089012,19875632898821430,162118004651048048,1326658157736876148
%N a(n) = coefficient of x^n in A(x) such that 2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(3*n-1)/2) * A(x)^(3*n) * (1 + x^n*A(x)).
%C Conjecture: a(n)/2 == A000041(n) (mod 2) for n >= 1; that is, a(n) is even, and a(n)/2 has the same parity as the number of partitions of n, for n >= 1.
%C Conjecture: a(n) == A361552(n+1) (mod 4) for n >= 0. - _Paul D. Hanna_, Mar 19 2023
%H Paul D. Hanna, <a href="/A359914/b359914.txt">Table of n, a(n) for n = 0..400</a>
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/QuintupleProductIdentity.html">Quintuple Product Identity</a>.
%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following.
%F (1) 2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(3*n-1)/2) * A(x)^(3*n) * (1 + x^n*A(x)).
%F (2) 2 = Product_{n>=1} (1 - x^n) * (1 + x^(n-1)*A(x)) * (1 + x^n/A(x)) * (1 - x^(2*n-1)*A(x)^2) * (1 - x^(2*n-1)/A(x)^2), by the Watson quintuple product identity.
%F a(n) ~ c * d^n / n^(3/2), where d = 8.762505108391427770669887... and c = 0.25785454119524349137288... - _Vaclav Kotesovec_, Jan 24 2023
%F Formula (2) can be rewritten as the functional equation QPochhammer(x) * QPochhammer(-y/x, x)/(1 + y/x) * QPochhammer(-1/y, x)/(1 + 1/y) * QPochhammer(y^2/x, x^2)/(1 - y^2/x) * QPochhammer(1/(x*y^2), x^2)/(1 - 1/(x*y^2)) = 2. - _Vaclav Kotesovec_, Jan 19 2024
%e G.f.: A(x) = 1 + 2*x + 4*x^2 + 30*x^3 + 154*x^4 + 1078*x^5 + 7046*x^6 + 50766*x^7 + 364268*x^8 + 2713444*x^9 + 20384884*x^10 + ...
%e where A = A(x) satisfies the doubly infinite sum
%e 2 = ... + x^26/A^12*(1 + 1/x^4*A) - x^15/A^9*(1 + 1/x^3*A) + x^7/A^6*(1 + 1/x^2*A) - x^2/A^3*(1 + 1/x^1*A) + x^0*A^0*(1 + x^0*A) - x^1*A^3*(1 + x^1*A) + x^5*A^6*(1 + x^2*A) - x^12*A^9*(1 + x^3*A) + x^22*A^12*(1 + x^4*A) + ... + (-1)^n*x^(n*(3*n+1)/2)*A^(3*n)*(1 + x^n*A) + ...
%e also, by the Watson quintuple product identity,
%e 2 = (1-x)*(1+1*A)*(1+x/A)*(1-x*A^2)*(1-x/A^2) * (1-x^2)*(1+x*A)*(1+x^2/A)*(1-x^3*A^2)*(1-x^3/A^2) * (1-x^3)*(1+x^2*A)*(1+x^3/A)*(1-x^5*A^2)*(1-x^5/A^2) * (1-x^4)*(1+x^3*A)*(1+x^4/A)*(1-x^7*A^2)*(1-x^7/A^2) * ...
%e SPECIFIC VALUES.
%e A(x) at x = 100/876 diverges.
%e A(100/877) = 1.557056751214068970380867667963285879403994350720494...
%e A(1/9) = 1.450191456209956107571253359997937360795442585014595870...
%e A(1/10) = 1.324252801492679846747365280925526932201317768972870665...
%t (* Calculation of constant d: *) 1/r /. FindRoot[{r^3 * s^3 * QPochhammer[r] * QPochhammer[1/(r*s^2), r^2] * QPochhammer[-1/s, r] * QPochhammer[-s/r, r] * QPochhammer[s^2/r, r^2] / ((1 + s)*(r + s)*(-r + s^2)*(-1 + r*s^2)) == -2, (-3*r^2 - 2*r*(1 + r)*s + r^3*s^2 - s^4 + 2*r*(1 + r)*s^5 + 3*r*s^6) * Log[r] + (1 + s)*(r + s)*(r - s^2)*(-1 + r*s^2) * (QPolyGamma[0, Log[-1/s]/Log[r], r] + QPolyGamma[0, -1/2 - Log[s]/Log[r], r^2] - QPolyGamma[0, -1/2 + Log[s]/Log[r], r^2] - QPolyGamma[0, Log[-s/r]/Log[r], r]) == 0}, {r, 1/8}, {s, 2}, WorkingPrecision -> 70] (* _Vaclav Kotesovec_, Jan 19 2024 *)
%o (PARI) /* Using the doubly infinite series */
%o {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
%o A[#A] = polcoeff(2 - sum(m=-#A, #A, (-1)^m * x^(m*(3*m-1)/2) * Ser(A)^(3*m) * (1 + x^m*Ser(A)) ), #A-1) ); A[n+1]}
%o for(n=0, 30, print1(a(n), ", "))
%o (PARI) /* Using the quintuple product */
%o {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
%o A[#A] = polcoeff(2 - prod(m=1, #A, (1 - x^m) * (1 + x^(m-1)*Ser(A)) * (1 + x^m/Ser(A)) * (1 - x^(2*m-1)*Ser(A)^2) * (1 - x^(2*m-1)/Ser(A)^2) ), #A-1) ); A[n+1]}
%o for(n=0, 30, print1(a(n), ", "))
%Y Cf. A359920, A359915, A359916, A359919, A359921, A359924.
%Y Cf. A361552, A040051, A000041.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Jan 23 2023