Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Jan 25 2023 09:08:55
%S 0,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,2,1,1,
%T 1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,1,
%U 1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1
%N Number of odd-length integer factorizations of n into factors > 1 with the same mean as median.
%C The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
%e The a(n) factorizations for n = 120, 960, 5760, 6720:
%e 120 960 5760 6720
%e 4*5*6 2*16*30 16*18*20 4*30*56
%e 2*6*10 4*12*20 3*5*6*8*8 10*21*32
%e 8*10*12 4*4*6*6*10 12*20*28
%e 3*4*4*4*5 2*2*8*10*18 4*5*6*7*8
%e 2*2*2*4*4*5*9 2*4*7*10*12
%e 2*2*2*4*5*6*7
%t facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t Table[Length[Select[facs[n],OddQ[Length[#]]&&Mean[#]==Median[#]&]],{n,100}]
%Y The version for partitions is A359895, ranked by A359891.
%Y This is the odd-length case of A359909, partitions A240219.
%Y A001055 counts factorizations.
%Y A326622 counts factorizations with integer mean, strict A328966.
%Y Cf. A316313, A326567/A326568, A359889, A359894, A359897, A359902, A359906, A359911, A360005.
%K nonn
%O 1,8
%A _Gus Wiseman_, Jan 24 2023