Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #12 Jan 21 2023 14:28:21
%S 0,1,1,1,1,1,2,1,1,3,1,1,4,1,1,6,1,1,6,1,5,7,1,1,8,12,1,9,2,1,33,1,1,
%T 11,1,50,12,1,1,13,70,1,46,1,1,122,1,1,16,102,155,17,1,1,30,216,258,
%U 19,1,1,310,1,1,666,1,382,23,1,1,23,1596,1,393,1,1
%N Number of strict odd-length integer partitions of n whose parts have the same mean as median.
%H Andrew Howroyd, <a href="/A359899/b359899.txt">Table of n, a(n) for n = 0..1000</a>
%F a(p) = 1 for prime p. - _Andrew Howroyd_, Jan 21 2023
%e The a(30) = 33 partitions:
%e (30) (11,10,9) (8,7,6,5,4)
%e (12,10,8) (9,7,6,5,3)
%e (13,10,7) (9,8,6,4,3)
%e (14,10,6) (9,8,6,5,2)
%e (15,10,5) (10,7,6,4,3)
%e (16,10,4) (10,7,6,5,2)
%e (17,10,3) (10,8,6,4,2)
%e (18,10,2) (10,8,6,5,1)
%e (19,10,1) (10,9,6,3,2)
%e (10,9,6,4,1)
%e (11,7,6,4,2)
%e (11,7,6,5,1)
%e (11,8,6,3,2)
%e (11,8,6,4,1)
%e (11,9,6,3,1)
%e (12,7,6,3,2)
%e (12,7,6,4,1)
%e (12,8,6,3,1)
%e (12,9,6,2,1)
%e (13,7,6,3,1)
%e (13,8,6,2,1)
%e (14,7,6,2,1)
%e (11,10,6,2,1)
%t Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&OddQ[Length[#]]&&Mean[#]==Median[#]&]],{n,0,30}]
%o (PARI) \\ Q(n,k,m) is g.f. for k strict parts of max size m.
%o Q(n,k,m)={polcoef(prod(i=1, m, 1 + y*x^i + O(x*x^n)), k, y)}
%o a(n)={if(n==0, 0, sumdiv(n, d, if(d%2, my(m=n/d, h=d\2, r=n-m*(h+1)); if(r>=h*(h+1), polcoef(Q(r, h, m-1)*Q(r, h, r), r)))))} \\ _Andrew Howroyd_, Jan 21 2023
%Y Strict odd-length case of A240219, complement A359894, ranked by A359889.
%Y Strict case of A359895, complement A359896, ranked by A359891.
%Y Odd-length case of A359897, complement A359898.
%Y The complement is counted by A359900.
%Y A000041 counts partitions, strict A000009.
%Y A008284/A058398/A327482 count partitions by mean, ranked by A326567/A326568.
%Y A008289 counts strict partitions by mean.
%Y A027193 counts odd-length partitions, strict A067659, ranked by A026424.
%Y A067538 counts ptns with integer mean, strict A102627, ranked by A316413.
%Y A237984 counts ptns containing their mean, strict A240850, ranked by A327473.
%Y A325347 counts ptns with integer median, strict A359907, ranked by A359908.
%Y A359893 and A359901 count partitions by median, odd-length A359902.
%Y Cf. A000016, A065795, A066571, A240851, A359903, A359906, A359910.
%K nonn
%O 0,7
%A _Gus Wiseman_, Jan 20 2023