%I #13 Dec 22 2023 10:36:13
%S 0,0,0,1,1,1,1,1,2,0,0,1,2,0,2,0,3,2,3,2,1,2,2,1,0,2,3,1,0,2,2,4,4,2,
%T 3,1,4,1,1,1,4,3,1,1,5,0,2,4,4,2,1,3,0,2,0,3,1,4,2,1,5,0,3,1,5,0,4,3,
%U 0,5,1,6,1,2,3,0,6,2,4,4,2,4,3,2,2,5,2
%N a(n) is the number of k > 0 such that n-1-2*k >= 0 and a(n-1-2*k) * a(n-1) = a(n-1-k)^2.
%C In other words, a(n) gives the number of geometric progressions (a(n-1-2*k), a(n-1-k), a(n-1)) of the form (x, x*y, x*y^2) or (x*y^2, x*y, x) with x, y >= 0.
%C This sequence has similarities with A308638: here we count geometric progressions, there arithmetic progressions.
%H Rémy Sigrist, <a href="/A359865/b359865.txt">Table of n, a(n) for n = 0..10000</a>
%H Rémy Sigrist, <a href="/A359865/a359865.png">Scatterplot of the first 250000 terms</a>
%H Rémy Sigrist, <a href="/A359865/a359865.txt">C program</a>
%e The first terms, alongside the corresponding k's, are:
%e n a(n) k's
%e -- ---- ------
%e 0 0 {}
%e 1 0 {}
%e 2 0 {}
%e 3 1 {1}
%e 4 1 {1}
%e 5 1 {2}
%e 6 1 {1}
%e 7 1 {1}
%e 8 2 {1, 2}
%e 9 0 {}
%e 10 0 {}
%e 11 1 {1}
%e 12 2 {1, 4}
%e 13 0 {}
%e 14 2 {3, 4}
%o (C) See Links section.
%Y Cf. A308638.
%K nonn
%O 0,9
%A _Rémy Sigrist_, Jan 16 2023