Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jul 12 2023 11:20:00
%S 4,3,4,7,8,9,18,19,18,17,22,27,30,31,28,67,40,37,60,55,52,57,80,87,64,
%T 73,108,85,78,75,102,239,74,97,74,115,102,125,110,191,108,123,118,151,
%U 140,149,162,331,134,133,128,201,184,217,178,299,202,163,178,251
%N a(n) is the number of solutions to the congruence x^y == y^x (mod n) where 0 <= x,y <= n.
%C a(n) is always greater than n.
%H Project Euler, <a href="https://projecteuler.net/problem=801">Problem 801: x^y == y^x</a>, (2022)
%F a(n) = Sum_{x=0..n} Sum_{y=0..n} [x^y == y^x (mod n)].
%o (Python)
%o def a(n):
%o count = 0
%o for x in range(0, n + 1):
%o for y in range(0, n + 1):
%o if x == y or pow(x, y, n) == pow(y, x, n): count += 1
%o return count
%o (PARI) a(n) = sum(x=0, n, sum(y=0, n, Mod(x, n)^y == Mod(y, n)^x)); \\ _Michel Marcus_, Jan 16 2023
%Y Cf. A355069.
%K nonn
%O 1,1
%A _Darío Clavijo_, Jan 16 2023