login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359719
a(n) = coefficient of x^n/n! in A(x) = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (exp(3*n*x) - exp(-(3*n+1)*x)).
2
1, -11, 58, -225, 2146, -14821, 85590, -1974433, 9180658, 2927259, -85838114, 63964584095, -520091681238, 16934937109019, -384678052715594, 5238404820228159, -295855770548974622, 4600244140822151099, -186350295911412573810, 4851711966859680480959
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Quintuple Product Identity.
FORMULA
E.g.f. A(x) = Sum_{n>=1} a(n)*x^n/n! may be defined by the following.
(1) A(x) = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (exp(3*n*x) - exp(-(3*n+1)*x)).
(2) A(x) = Product_{n>=1} (1 - x^n) * (1 - x^n*exp(x)) * (1 - x^(n-1)*exp(-x)) * (1 - x^(2*n-1)*exp(2*x)) * (1 - x^(2*n-1)*exp(-2*x)), by the Watson quintuple product identity.
(3) A(x) = 2*exp(-x/2) * Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * sinh((6*n+1)*x/2).
(4) A(x) = (1 - exp(-x)) * Product_{n>=1} (1 - x^n) * (1 - 2*x^n*cosh(x) + x^(2*n)) * (1 - 2*x^(2*n-1)*cosh(2*x) + x^(4*n-2)).
EXAMPLE
E.g.f.: A(x) = x - 11*x^2/2! + 58*x^3/3! - 225*x^4/4! + 2146*x^5/5! - 14821*x^6/6! + 85590*x^7/7! - 1974433*x^8/8! + 9180658*x^9/9! + 2927259*x^10/10! + ...
where A(x) equals the doubly infinite series
A(x) = ... + x^12*(exp(-9*x) - exp(8*x)) + x^5*(exp(-6*x) - exp(5*x)) + x*(exp(-3*x) - exp(2*x)) + (1 - exp(-x)) + x^2*(exp(3*x) - exp(-4*x)) + x^7*(exp(6*x) - exp(-7*x)) + x^15*(exp(9*x) - exp(-10*x)) + ... + x^(n*(3*n+1)/2) * (exp(3*n*x) - exp(-(3*n+1)*x)) + ...
also, by the Watson quintuple product identity,
A(x) = (1-x)*(1-x*exp(x))*(1-1*exp(-x))*(1-x*exp(2*x))*(1-x*exp(-2*x)) * (1-x^2)*(1-x^2*exp(x))*(1-x*exp(-x))*(1-x^3*exp(2*x))*(1-x^3*exp(-2*x)) * (1-x^3)*(1-x^3*exp(x))*(1-x^2*exp(-x))*(1-x^5*exp(2*x))*(1-x^5*exp(-2*x)) * (1-x^4)*(1-x^4*exp(x))*(1-x^3*exp(-x))*(1-x^7*exp(2*x))*(1-x^7*exp(-2*x)) * ...
PROG
(PARI) /* Using the doubly infinite series */
{a(n) = my(X=x+x*O(x^n), M=sqrtint(2*n)); n! * polcoeff( sum(m=-M, M, x^(m*(3*m+1)/2) * (exp(3*m*X) - exp(-(3*m+1)*X)) ), n)}
for(n=1, 30, print1(a(n), ", "))
(PARI) /* Using the quintuple product */
{a(n) = my(X=x+x*O(x^n)); n! * polcoeff( prod(m=1, n, (1 - x^m) * (1 - x^m*exp(X)) * (1 - x^(m-1)*exp(-X)) * (1 - x^(2*m-1)*exp(2*X)) * (1 - x^(2*m-1)*exp(-2*X)) ), n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A211795 A256226 A290360 * A356039 A073720 A257364
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jan 22 2023
STATUS
approved