Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Jan 25 2023 09:08:36
%S 489489,525698,526535,763002,903210,1423214
%N Numbers k for which rank of the elliptic curve y^2 = x^3 - 432*k^2 is 5.
%F A060838(a(n)) = 5.
%o (PARI) is(n)=my(c=prod(i=1, #f~, f[i, 1]^(f[i, 2]\3)), r=n/c^3, E=ellinit([0, 16*r^2]), eri=ellrankinit(E), mwr=ellrank(eri), ar); if(r<489489, return(0)); if(mwr[1]>5 || mwr[2]<5, return(0)); ar=ellanalyticrank(E)[1]; if(ar<2, return(0)); for(effort=1, 99, mwr=ellrank(eri, effort); if(mwr[1]>5 || mwr[2]<5, return(0), mwr[1]==5 && mwr[2]==5, return(1))); Str("unknown; ",ar==5," under BSD conjecture") \\ _Charles R Greathouse IV_, Jan 25 2023
%Y Subsequence of A159843.
%Y Cf. A060748, A060838, A309960 (rank 0), A309961 (rank 1), A309962 (rank 2), A309963 (rank 3), A309964 (rank 4).
%K nonn,more
%O 1,1
%A Maksym Voznyy and _Charles R Greathouse IV_, Jan 25 2023