login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of coefficients T(n,k) of x^n*y^k in g.f. A(x,y) satisfying y = Sum_{n=-oo..+oo} (-1)^n * x^n * (y*A(x,y) + x^(n-1))^(n+1).
18

%I #44 May 26 2023 13:45:38

%S 1,2,1,4,6,1,8,21,12,1,14,62,68,20,1,24,162,284,170,30,1,40,384,998,

%T 970,360,42,1,64,855,3092,4410,2720,679,56,1,100,1806,8724,17172,

%U 15627,6608,1176,72,1,154,3648,22904,59545,74682,47089,14392,1908,90,1,232,7110,56679,188700,311530,271698,125160,28764,2940,110,1

%N Triangle of coefficients T(n,k) of x^n*y^k in g.f. A(x,y) satisfying y = Sum_{n=-oo..+oo} (-1)^n * x^n * (y*A(x,y) + x^(n-1))^(n+1).

%C Related identity: 0 = Sum_{-oo..+oo} (-1)^n * x^n * (y + x^n)^n, which holds formally for all y.

%C T(n,0) = A015128(n), the number of overpartitions of n, for n >= 0.

%C T(n+1,1) = A022571(n), the coefficient of x^n in Product_{m>=1} (1 + x^m)^6, for n >= 0.

%C A359711(n) = Sum_{k=0..n} T(n,k) for n >= 0 (row sums).

%C A359712(n) = Sum_{k=0..n} T(n,k)*2^k for n >= 0.

%C A359713(n) = Sum_{k=0..n} T(n,k)*3^k for n >= 0.

%C A363104(n) = Sum_{k=0..n} T(n,k)*4^k for n >= 0.

%C A363105(n) = Sum_{k=0..n} T(n,k)*5^k for n >= 0.

%C A359714(n) = T(2*n,n) for n >= 0 (central terms).

%C A359715(n) = T(n+2,2) for n >= 0.

%C A359718(n) = T(n+3,3) for n >= 0.

%C A363142(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) for n >= 0. - _Paul D. Hanna_, May 18 2023

%C From _Paul D. Hanna_, May 20 2023: (Start)

%C A363182(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 2^(n-2*k) for n >= 0.

%C A363183(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 3^(n-2*k) for n >= 0.

%C A363184(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 4^(n-2*k) for n >= 0.

%C A363185(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) * 5^(n-2*k) for n >= 0. (End)

%H Paul D. Hanna, <a href="/A359670/b359670.txt">Table of n, a(n) for n = 0..2555</a>

%F G.f. A(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^n*y^k may be described as follows.

%F (1) y = Sum_{n=-oo..+oo} (-1)^n * x^n * (y*A(x,y) + x^(n-1))^(n+1).

%F (2) x*y = Sum_{n=-oo..+oo} (-1)^n * (x*y*A(x,y) + x^n)^(n+1).

%F (3) x*y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + y*A(x,y)*x^(n+1))^(n-1).

%F (4) A(x,y) = 1/[Sum_{n=-oo..+oo} (-1)^n * (x*y*A(x,y) + x^n)^n ].

%F (5) A(x,y) = 1/[Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + y*A(x,y)*x^(n+1))^n ].

%F From _Paul D. Hanna_, May 18 2023: (Start)

%F (6) y = Sum_{n=-oo..+oo} (-1)^n * x^(3*n+1) * (y*A(x,y) + x^n)^n.

%F (7) A(x,y) = 1/[Sum_{n=-oo..+oo} (-1)^(n+1) * x^(2*n+1) * (y*A(x,y) + x^n)^n ].

%F (8) x*y = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 + y*A(x,y)*x^(n+1))^(n+1).

%F (9) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (y*A(x,y) + x^n)^(n+1).

%F (10) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + y*A(x,y)*x^n)^n.

%F (11) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + y*A(x,y)*x^(n+1))^n. (End)

%e G.f.: A(x,y) = 1 + x*(2 + y) + x^2*(4 + 6*y + y^2) + x^3*(8 + 21*y + 12*y^2 + y^3) + x^4*(14 + 62*y + 68*y^2 + 20*y^3 + y^4) + x^5*(24 + 162*y + 284*y^2 + 170*y^3 + 30*y^4 + y^5) + x^6*(40 + 384*y + 998*y^2 + 970*y^3 + 360*y^4 + 42*y^5 + y^6) + x^7*(64 + 855*y + 3092*y^2 + 4410*y^3 + 2720*y^4 + 679*y^5 + 56*y^6 + y^7) + x^8*(100 + 1806*y + 8724*y^2 + 17172*y^3 + 15627*y^4 + 6608*y^5 + 1176*y^6 + 72*y^7 + y^8) + x^9*(154 + 3648*y + 22904*y^2 + 59545*y^3 + 74682*y^4 + 47089*y^5 + 14392*y^6 + 1908*y^7 + 90*y^8 + y^9) + x^10*(232 + 7110*y + 56679*y^2 + 188700*y^3 + 311530*y^4 + 271698*y^5 + 125160*y^6 + 28764*y^7 + 2940*y^8 + 110*y^9 + y^10) + ...

%e This triangle of coefficients T(n,k) of x^n*y^k in A(x,y), for n >= 0, k = 0..n, begins

%e [1];

%e [2, 1];

%e [4, 6, 1];

%e [8, 21, 12, 1];

%e [14, 62, 68, 20, 1];

%e [24, 162, 284, 170, 30, 1];

%e [40, 384, 998, 970, 360, 42, 1];

%e [64, 855, 3092, 4410, 2720, 679, 56, 1];

%e [100, 1806, 8724, 17172, 15627, 6608, 1176, 72, 1];

%e [154, 3648, 22904, 59545, 74682, 47089, 14392, 1908, 90, 1];

%e [232, 7110, 56679, 188700, 311530, 271698, 125160, 28764, 2940, 110, 1];

%e [344, 13434, 133516, 556085, 1169100, 1342684, 860664, 300888, 53640, 4345, 132, 1];

%e [504, 24702, 301664, 1542640, 4029237, 5884160, 4980320, 2438712, 666240, 94490, 6204, 156, 1];

%e [728, 44361, 657368, 4065868, 12940766, 23411339, 25215416, 16367874, 6302148, 1377464, 158708, 8606, 182, 1];

%e [1040, 78006, 1387854, 10253720, 39153924, 85994062, 114672768, 94919382, 48660900, 15071628, 2687454, 256022, 11648, 210, 1]; ...

%e RELATED SERIES.

%e Given g.f. F(x) of A361770, where

%e F(x) = 1 + 3*x + 14*x^2 + 80*x^3 + 510*x^4 + 3498*x^5 + 25145*x^6 + 186972*x^7 + 1426159*x^8 + 11096944*x^9 + 87736474*x^10 + ... + A361770(n)*x^n + ...

%e then

%e (1) F(x) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k) * F(x)^k,

%e (2) F(x) = Sum_{n=-oo..+oo} (-1)^n * x^n * (F(x)^2 + x^(n-1))^(n+1).

%e Given g.f. G(x) of A363135, where

%e G(x) = 1 + 3*x + 17*x^2 + 133*x^3 + 1201*x^4 + 11796*x^5 + 122192*x^6 + 1314266*x^7 + 14536760*x^8 + 164299909*x^9 + ... + A363135(n)*x^n + ...

%e then

%e (1) G(x) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k) * G(x)^(2*k),

%e (2) G(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^n * (F(x)^3 + x^(n-1))^(n+1).

%o (PARI) {T(n,k) = my(A=1); for(i=1,n,

%o A = 1/sum(m=-#A,#A, (-1)^m * (x*y*A + x^m + x*O(x^n) )^m ) );

%o polcoeff( polcoeff( A,n,x),k,y)}

%o for(n=0,15, for(k=0,n, print1( T(n,k),", "));print(""))

%o (PARI) {T(n,k) = my(A=[1]); for(i=1,n, A = concat(A,0);

%o A[#A] = polcoeff(-y + sum(n=-#A,#A, (-1)^n * x^n * (y*Ser(A) + x^(n-1))^(n+1) )/(-y),#A-1,x) ); polcoeff( A[n+1],k,y)}

%o for(n=0,15, for(k=0,n, print1( T(n,k),", "));print(""))

%Y Cf. A359711 (row sums), A359712 (y=2), A359713 (y=3), A363104(y=4), A363105 (y=5).

%Y Cf. A359714 (central terms), A359715 (column 2), A359718 (column 3).

%Y Cf. A363142, A363182, A363183, A363184, A363185.

%Y Cf. A361770, A363135, A363136, A363137.

%Y Cf. A359720, A293600.

%K nonn,tabl

%O 0,2

%A _Paul D. Hanna_, Jan 17 2023