login
Number of edge cuts in the n-Moebius ladder.
2

%I #10 Jan 27 2023 10:42:44

%S 1,26,307,3004,27049,232658,1947103,16021784,130447957,1055068574,

%T 8498016971,68269451044,547562782017,4387403277994,35132904838583,

%U 281226897433648,2250607478637613,18008682685966262,144087851840540835,1152791046751807804,9222750661998396185,73784021962658308290

%N Number of edge cuts in the n-Moebius ladder.

%H Andrew Howroyd, <a href="/A359622/b359622.txt">Table of n, a(n) for n = 1..200</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EdgeCut.html">Edge Cut</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MoebiusLadder.html">Moebius Ladder</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (20,-146,488,-777,612,-228,32).

%F G.f.: x*(1 + 6*x - 67*x^2 + 172*x^3 - 120*x^4 + 36*x^5)/((1 - x)^2*(1 - 8*x)*(1 - 5*x + 2*x^2)^2). - _Andrew Howroyd_, Jan 26 2023

%o (PARI) Vec((1 + 6*x - 67*x^2 + 172*x^3 - 120*x^4 + 36*x^5)/((1 - x)^2*(1 - 8*x)*(1 - 5*x + 2*x^2)^2) + O(x^20)) \\ _Andrew Howroyd_, Jan 26 2023

%K nonn,easy

%O 1,2

%A _Eric W. Weisstein_, Jan 07 2023

%E a(1)-a(2) prepended and terms a(8) and beyond from _Andrew Howroyd_, Jan 26 2023