The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A359611 The lexicographically earliest "Increasing Term Fractal Jump Sequence". 0
 1, 2, 20, 22, 100, 200, 201, 1000, 20000, 20001, 110000, 2000000, 2000001, 110100000, 200000000, 200000001, 1101001000000, 2000000000020, 2000000010101, 10100010000000, 20000000000002, 20020000000001, 101001010010000, 100000000200000000000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The rules of an "Increasing Term Fractal Jump Sequence" are described in A105647. We define a "forced" digit in Fractal Jump Sequences as a digit that is required to be a specific value by a digit that occurred previously in the sequence. This is in opposition to digits that could have any value selected for them without breaking the Fractal Jump Sequence rules. In the diagram below, the digits with carets below them are the forced digits. To find a(n), increment a(n-1) until all of the forced digits that will positionally occur in a(n) satisfy their forced values. Then, to avoid leading zeros in a(n+1), if there are forced zeros immediately following the candidate a(n), continue to increment until it is the same number of digits longer as there are consecutive forced zeros, and continue to increment until the candidate a(n) once again satisfies all forcing criteria (including the new zeros). The only digits that appear in this sequence are 0, 1, and 2, even though no numerals are arbitrarily restricted from appearing. LINKS Table of n, a(n) for n=1..24. EXAMPLE The sequence and the "kept"/"forced" digits begin 1, 2, 20, 22, 100, 200, 201, 1000, 20000, ... ^ ^ ^ ^ ^ ^ ^ ^^ ^ ^^ 1 2 2 0 2 2 1 00 2 00 In the case of computing a(5), we have a 22 for a(4), so we would normally increment to 23, as there is nothing forcing the next two digits. However, since there is a 0 forcing the following digit, we must increment to the smallest number that satisfies this forced 0 (as we can't have leading zeros in a(6)). CROSSREFS Cf. A359385 (no zeros), A105647, A105395, A105396, A105397, A105398. Sequence in context: A322964 A112405 A136885 * A136909 A169965 A202170 Adjacent sequences: A359608 A359609 A359610 * A359612 A359613 A359614 KEYWORD nonn,base AUTHOR Tyler Busby, Jan 06 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 06:22 EDT 2024. Contains 373540 sequences. (Running on oeis4.)