OFFSET
1,1
COMMENTS
A new prime is always found since at worst P can be the product of all primes {a(1..n-1)} and per Euclid's proof of the infinitude of primes, P+1 then certainly has a prime factor not among a(1..n-1).
Taking products P in ascending order generally results in smaller quantities to consider than always taking the product of all primes as done in A000945, the Euclid-Mullin sequence.
Conjecture: P+1 has at most one prime factor not already in the sequence, so the requirement of taking "the smallest such" is unnecessary.
LINKS
Joel Brennan, Table of n, a(n) for n = 1..5000
EXAMPLE
For n=1, the sole product P is the empty product P=1, and P+1 = 2 is itself prime so a(1) = 2.
For n=3, the primes so far are 2,3 but products P=2 or P=3 have P+1 = 3 or 4 which have no new prime factor. Product P = 2*3 = 6 has P+1 = 7 which is a new prime so a(3) = 7.
For n=4, the smallest product P with a new prime in P+1 is P = 2*7 = 14 for which P+1 = 15 and a(4) = 5 is its smallest new prime factor.
CROSSREFS
KEYWORD
nonn
AUTHOR
Joel Brennan, Jan 03 2023
EXTENSIONS
More terms from Kevin Ryde, Jan 10 2023
STATUS
approved