login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359449
Positive integers in which the sum of the k-th powers of their digits is a prime number for k = 1, 2, 3, 4, 5, and 6 but not for k=7.
0
223, 232, 322, 1349, 1394, 1439, 1493, 1934, 1943, 2023, 2032, 2203, 2230, 2302, 2320, 3022, 3149, 3194, 3202, 3220, 3419, 3491, 3914, 3941, 4139, 4193, 4319, 4391, 4913, 4931, 9134, 9143, 9314, 9341, 9413, 9431, 10349, 10394, 10439, 10493, 10934, 10943, 13049, 13094, 13409, 13490, 13904, 13940
OFFSET
1,1
EXAMPLE
223 belongs to this sequence because 2+2+3=7, 2^2+2^2+3^2=17, 2^3+2^3+3^3=43, 2^4+2^4+3^4=113, 2^5+2^5+3^5=307, and 2^6+2^6+3^6=857 are prime numbers whereas 2^7+2^7+3^7 is a composite number.
MAPLE
filter:= proc(n) local L, t, k;
L:= convert(n, base, 10);
andmap(isprime, [seq(add(t^k, t=L), k=1..6)]) and not isprime(add(t^7, t=L))
end proc:
select(filter, [$1..20000]); # Robert Israel, Jan 03 2023
MATHEMATICA
For[a = 0, a <= 9, a++,
For[b = 0, b <= 9, b++,
For[c = 0, c <= 9, c++,
For[d = 0, d <= 9, d++,
If[PrimeQ[a + b + c + d] == True &&
PrimeQ[a^2 + b^2 + c^2 + d^2] == True &&
PrimeQ[a^3 + b^3 + c^3 + d^3] == True &&
PrimeQ[a^4 + b^4 + c^4 + d^4] == True &&
PrimeQ[a^5 + b^5 + c^5 + d^5] == True &&
PrimeQ[a^6 + b^6 + c^6 + d^6] == True &&
PrimeQ[a^7 + b^7 + c^7 + d^7] == False, Print[a, b, c, d]]]]]]
(* This code outputs all the terms of the sequence in the interval [1, 10^4]. *)
PROG
(PARI) isok(n) = my(d=digits(n)); for (i=1, 6, if (!isprime(sum(k=1, #d, d[k]^i)), return(0))); !isprime(sum(k=1, #d, d[k]^7)); \\ Michel Marcus, Jan 02 2023
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
José Hernández, Jan 02 2023
STATUS
approved