Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Apr 01 2023 13:29:08
%S 1,1,1,2,2,4,2,1,1,1,4,2,2,4,1,1,1,1,3,1,3,2,8,1,2,1,7,2,1,2,5,2,1,1,
%T 3,3,1,6,1,1,5,5,4,5,1,1,4,8,3,3,1,2,1,4,2,3,5,10,2,1,3,3,1,1,1,6,1,3,
%U 7,1,1,7,3,14,3,6,3,2,1,1,2,7,2,1,1,2,2,8,4,6,4,8,1,1,2,1,6,9,2,1
%N a(n) = number of k < t such that rad(k) = rad(t) and k does not divide t, where t = A360768(n) and rad(k) = A007947(k).
%C This sequence contains nonzero values in A355432.
%H Michael De Vlieger, <a href="/A359382/b359382.txt">Table of n, a(n) for n = 1..10000</a>
%H Michael De Vlieger, <a href="/A359382/a359382.png">Scatterplot of a(n)</a>, n = 1..2^16, highlighting records (A360768(n) in A360589) in red.
%F a(n) = A355432(A360768(n)) = length of row n in A359929.
%e Table relating a(n) to b(n) = A360768(n) and row n of A359929.
%e n b(n) row n of A359929 a(n)
%e ---------------------------------
%e 1 18 12 1
%e 2 24 18 1
%e 3 36 24 1
%e 4 48 18, 36 2
%e 5 50 20, 40 2
%e 6 54 12, 24, 36, 48 4
%t rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
%t s = Select[Range[671], Nor[SquareFreeQ[#], PrimePowerQ[#]] &];
%t t = Select[s, #1/#2 >= #3 & @@ {#1, Times @@ #2, #2[[2]]} & @@
%t {#, FactorInteger[#][[All, 1]]} &];
%t Map[Function[{n, k},
%t Count[TakeWhile[s, # < n &],
%t _?(And[rad[#] == k, ! Divisible[n, #]] &)]] @@ {#, rad[#]} &, t]
%Y Cf. A007947, A010846, A013929, A020639, A024619, A027750, A126706, A162306, A243822, A272618, A355432, A359929, A360589, A360768.
%K nonn
%O 1,4
%A _Michael De Vlieger_, Mar 29 2023