login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Maximal coefficient of (1 + x) * (1 + x^3) * (1 + x^6) * ... * (1 + x^(n*(n+1)/2)).
3

%I #16 Dec 29 2022 03:04:34

%S 1,1,1,1,2,2,3,4,5,7,12,18,27,44,73,122,210,362,620,1050,1857,3290,

%T 5949,10665,19086,34330,62252,113643,209460,383888,706457,1300198,

%U 2407535,4468367,8331820,15525814,28987902,54180854,101560631,190708871,358969426

%N Maximal coefficient of (1 + x) * (1 + x^3) * (1 + x^6) * ... * (1 + x^(n*(n+1)/2)).

%H Seiichi Manyama, <a href="/A359348/b359348.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) ~ sqrt(5) * 2^(n + 3/2) / (sqrt(Pi) * n^(5/2)). - _Vaclav Kotesovec_, Dec 29 2022

%e (1 + x) * (1 + x^3) * (1 + x^6) * (1 + x^10) = 1 + x + x^3 + x^4 + x^6 + x^7 + x^9 + 2 * x^10 + x^11 + x^13 + x^14 + x^16 + x^17 + x^19 + x^20. So a(4) = 2.

%o (PARI) a(n) = vecmax(Vec(prod(k=1, n, 1+x^(k*(k+1)/2))));

%Y Cf. A000217, A024940, A025591, A158380, A160235.

%K nonn

%O 0,5

%A _Seiichi Manyama_, Dec 27 2022