login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of divisors of 4*n-2 of form 4*k+1.
1

%I #19 Aug 16 2023 02:26:45

%S 1,1,2,1,2,1,2,2,2,1,2,1,3,2,2,1,2,2,2,2,2,1,4,1,2,2,2,2,2,1,2,3,4,1,

%T 2,1,2,3,2,1,3,1,4,2,2,2,2,2,2,3,2,1,4,1,2,2,2,2,4,2,2,2,4,1,2,1,2,4,

%U 2,1,2,2,4,3,2,1,4,2,2,2,2,1,4,1,3,3,2,3,2,1

%N Number of divisors of 4*n-2 of form 4*k+1.

%F a(n) = A001826(4*n-2).

%F G.f.: Sum_{k>0} x^k/(1 - x^(4*k-2)).

%F G.f.: Sum_{k>0} x^(2*k-1)/(1 - x^(4*k-3)).

%t a[n_] := DivisorSum[4*n-2, 1 &, Mod[#, 4] == 1 &]; Array[a, 100] (* _Amiram Eldar_, Aug 16 2023 *)

%o (PARI) a(n) = sumdiv(4*n-2, d, d%4==1);

%o (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(4*k-2))))

%o (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)/(1-x^(4*k-3))))

%Y Cf. A001826, A078703, A359227.

%K nonn,easy

%O 1,3

%A _Seiichi Manyama_, Dec 24 2022