Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Dec 27 2022 16:53:59
%S 3,5,8,5,4,2,7,1,6,0,0,0,3,3,9,9,6,5,7,0,7,0,5,7,6,0,7,7,9,1,8,1,1,3,
%T 1,1,6,8,2,0,3,6,2,0,5,7,2,1,3,0,1,1,2,7,7,0,4,0,0,8,7,6,4,8,8,1,4,0,
%U 5,6,5,4,1,2,9,1,5,9,7,3,0,1,1,4,9,3,2,5,3,6,1,5,7,6,5,9,5,6,9,9,7,4,4,0,3,6,8,6
%N Decimal expansion of Integral_{x = 1..oo} 1/x^(x^3) dx.
%C For a, b nonnegative integers, the alternating divergent series Sum_{n >= 0} (-1)^n*(a*n + b)^n is Borel summable to Integral_{x = 1..oo} x^(a-b-1)/x^(x^a) dx.
%H Peter Bala, <a href="/A245637/a245637.pdf">Borel summation of a family of divergent series</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Sophomore%27s_dream">Sophomore's Dream</a>
%F Equals Integral_{x = 1..oo} 1/(3*x - 2)^x dx.
%F Equals the Borel sum of the alternating divergent series Sum_{n >= 0} (-1)^n*(3*n + 2)^n. Compare with the alternating convergent series Sum_{n >= 1} (-1)^(n+1)/(3*n - 2)^n = Integral_{x = 0..1} x^(x^3) dx. See A359285.
%e 0.35854271600033996570705760779181131168203620572130...
%p evalf(int(1/x^(x^3), x = 1..infinity), 110);
%t NIntegrate[1/x^(x^3), {x, 1, Infinity}, WorkingPrecision -> 110] // RealDigits // First
%Y Cf. A245637, A253299, A359282, A359283, A359284, A359285.
%K nonn,cons,easy
%O 1,1
%A _Peter Bala_, Dec 24 2022