login
Consider the race between primes, squarefree semiprimes, ..., products of k distinct primes; sequence indicates when one overtakes another to give a new race leader.
1

%I #12 Jan 09 2023 13:02:52

%S 2,58,61,65,73,77,1279789,1280057,1280066,1280073,1280437,1280441,

%T 1281155,1281161,1281165,1281179,1281190,1281243,1281247,1281262,

%U 1281271,1281313,1281365

%N Consider the race between primes, squarefree semiprimes, ..., products of k distinct primes; sequence indicates when one overtakes another to give a new race leader.

%C This is A276176 for squarefree integers as listed in A340316 table.

%o (PARI) lista() = {my(nb = 10^7); my(ip = 1); while (factorback(primes(ip)) < nb, ip++); my(vp = vector(ip), list = List([2]), listi = List([1]), lastnb=1, lasti=1, nba = 3, nbb = nb); vp[lasti]++; for (i=1, 2, forsquarefree(isqf=nba, nbb, my(newi = omega(isqf[2])); vp[newi]++; if (newi != lasti, if (vp[newi] > vp[lasti], lasti = newi; listput(list, isqf[1]); listput(listi, vp[newi]);););); nba = nbb + 1; nbb = nbb + nb;); Vec(list);} \\ _Michel Marcus_, Dec 22 2022

%Y Cf. A276176, A340316.

%Y Essentially the same as A335293.

%K nonn,more

%O 1,1

%A _Michel Marcus_, Dec 22 2022

%E Name clarified by _Peter Munn_, Dec 31 2022