login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the smallest centered triangular number divisible by exactly n centered triangular numbers.
1

%I #19 Jan 02 2023 09:01:20

%S 1,4,64,5860,460,74260,14260,1221760,5567104,103360,20120860,

%T 169096960,1211757760,31286787760,31498960,114183284260,1553569960,

%U 33186496960,446613160960,43581101074960,274644405760,64262632960,121634429663260,5786547945760

%N a(n) is the smallest centered triangular number divisible by exactly n centered triangular numbers.

%C a(25) > 10^15. a(30) = 281149511296960. - _Jon E. Schoenfield_, Dec 25 2022

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CenteredTriangularNumber.html">Centered Triangular Number</a>

%H <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a>

%e a(5) = 460, because 460 is a centered triangular number that has 5 centered triangular divisors {1, 4, 10, 46, 460} and this is the smallest such number.

%o (Magma)

%o // Note: the program below finds all terms through a(22) except for

%o // a(20) = 43581101074960, which would be reached at k = 5390183.

%o a := [ 0 : n in [ 1 .. 22 ] ];

%o for k in [ 0 .. 550000 ] do

%o c := 3*((k*(k - 1)) div 2) + 1;

%o D := Divisors(c);

%o n := 0;

%o for d in D do

%o if d mod 3 eq 1 then

%o if IsSquare(((d - 1) div 3)*8 + 1) then

%o n +:= 1;

%o end if;

%o end if;

%o end for;

%o if a[n] eq 0 then

%o a[n] := c;

%o end if;

%o end for;

%o a; // _Jon E. Schoenfield_, Dec 25 2022

%Y Cf. A005448, A076983, A300409, A358544, A358861, A359232.

%K nonn

%O 1,2

%A _Ilya Gutkovskiy_, Dec 22 2022

%E a(8)-a(24) from _Jon E. Schoenfield_, Dec 25 2022