login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of divisors of 4*n-3 of form 4*k+1.
4

%I #15 Aug 23 2023 08:42:15

%S 1,2,2,2,2,2,3,2,2,2,2,4,2,2,2,2,4,2,2,2,3,4,2,2,2,2,4,2,2,4,2,4,2,2,

%T 2,2,4,2,4,2,2,4,3,2,2,2,4,4,2,2,2,4,2,2,2,4,6,2,2,2,2,4,2,2,2,4,4,2,

%U 4,2,2,4,3,2,4,2,4,2,2,2,2,6,2,4,2,2,4,2,2,4

%N Number of divisors of 4*n-3 of form 4*k+1.

%F a(n) = A001826(4*n-3).

%F G.f.: Sum_{k>0} x^k/(1 - x^(4*k-3)).

%t a[n_] := DivisorSum[4*n-3, 1 &, Mod[#, 4] == 1 &]; Array[a, 100] (* _Amiram Eldar_, Aug 23 2023 *)

%o (PARI) a(n) = sumdiv(4*n-3, d, d%4==1);

%o (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(4*k-3))))

%Y Cf. A001826, A078703.

%K nonn,easy

%O 1,2

%A _Seiichi Manyama_, Dec 22 2022