%I #17 Dec 10 2022 08:09:31
%S 7,28,63,1168,12878
%N Number of undirected cycles of the Platonic graphs (in the order of tetrahedral, cubical, octahedral, dodecahedral, and icosahedral graph).
%H Seiichi Manyama, <a href="https://github.com/manman4/OEIS_03/blob/main/358/358999/358999_01.py">Python program</a> (github)
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CyclePolynomial.html">Cycle Polynomial</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TetrahedralGraph.html">Tetrahedral Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CubicalGraph.html">Cubical Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/OctahedralGraph.html">Octahedral Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DodecahedralGraph.html">Dodecahedral Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IcosahedralGraph.html">Icosahedral Graph</a>
%e graph \ n-cycle | 3 4 5 6 7 8 9 10 11 12 13 ...
%e -------------------+-------------------------------------------------
%e tetrahedral graph | 4 3
%e cubical graph | 0 6 0 16 0 6
%e octahedral graph | 8 15 24 16
%e dodecahedral graph | 0 0 12 0 0 30 20 36 120 100 60 ...
%e icosahedral graph | 20 30 72 240 720 1620 2680 3336 2880 1280
%Y Cf. A053016, A268283, A359000, A359001, A359002.
%K nonn,fini,full
%O 1,1
%A _Seiichi Manyama_, Dec 10 2022