login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = ((...((n!^(n-1)!)^(n-2)!)^...)^2!)^1!.
2

%I #30 Dec 09 2022 06:17:14

%S 1,2,36,36520347436056576

%N a(n) = ((...((n!^(n-1)!)^(n-2)!)^...)^2!)^1!.

%C Like n!^(n-1!)^...^2!^1! (A073581), but with all power operators nested from the left.

%C This sequence grows roughly doubly-exponentially. - _Charles R Greathouse IV_, Dec 07 2022

%H Arsen Vardanyan, <a href="/A358972/b358972.txt">Table of n, a(n) for n = 1..5</a>

%F a(n) = n!^A000178(n-1). - _Charles R Greathouse IV_, Dec 07 2022

%F log log a(n) ~ 0.5*n^2*log^2 n. - _Charles R Greathouse IV_, Dec 07 2022

%e a(4) = ((4!^3!)^2!)^1! = (24^6)^2 = 191102976^2 = 36520347436056576

%o (PARI) a(n) = n!^prod(i=2,n-1,i^(n-i)); \\ _Kevin Ryde_, Dec 09 2022

%Y Cf. A000178, A067039.

%Y Cf. A073581 (exponents right to left).

%K nonn

%O 1,2

%A _Arsen Vardanyan_, Dec 07 2022