login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n+1) gives the number of occurrences of the smallest digit of a(n) so far, up to and including a(n), with a(0)=0.
2

%I #32 Jan 02 2023 12:30:54

%S 0,1,1,2,1,3,1,4,1,5,1,6,1,7,1,8,1,9,1,10,2,2,3,2,4,2,5,2,6,2,7,2,8,2,

%T 9,2,10,3,3,4,3,5,3,6,3,7,3,8,3,9,3,10,4,4,5,4,6,4,7,4,8,4,9,4,10,5,5,

%U 6,5,7,5,8,5,9,5,10,6,6,7,6,8,6,9,6,10,7,7,8,7,9,7,10,8,8,9,8,10,9,9,10,10,11,22,12,23,14

%N a(n+1) gives the number of occurrences of the smallest digit of a(n) so far, up to and including a(n), with a(0)=0.

%C Up to a(103)=12, the terms are identical to A248034.

%H Bence Bernáth, <a href="/A358967/b358967.txt">Table of n, a(n) for n = 0..10000</a>

%H Eric Angelini, <a href="http://list.seqfan.eu/oldermail/seqfan/2014-October/013784.html">Digit-counters updating themselves</a>

%o (MATLAB)

%o length_seq=150;

%o sequence(1)=0;

%o seq_for_digits=(num2str(sequence(1))-'0');

%o for i1=1:1:length_seq

%o sequence(i1+1)=sum(seq_for_digits==min((num2str(sequence(i1))-'0'))');

%o seq_for_digits=[seq_for_digits, num2str(sequence(i1+1))-'0'];

%o end

%o (Python)

%o sequence=[0]

%o length=150

%o seq_for_digits=list(map(int, list(str(sequence[0]))))

%o for ii in range(length):

%o sequence.append(seq_for_digits.count(min(list(map(int,list(str(sequence[-1])))))))

%o seq_for_digits.extend(list(map(int, list(str(sequence[-1])))))

%Y Cf. A248034, A249009, A356348, A336514, A358851.

%K nonn,base

%O 0,4

%A _Bence Bernáth_, Dec 08 2022