login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = coefficient of x^n in A(x) such that: 1 = Sum_{n=-oo..+oo} x^n * (A(x) - x^(6*n+5))^(n-1).
6

%I #16 Dec 09 2022 14:34:47

%S 1,2,7,30,143,729,3876,21321,120195,690816,4032807,23846485,142530516,

%T 859719414,5226571568,31992109155,197002217763,1219554190530,

%U 7585453430037,47380560231549,297081856642195,1869191995298989,11797744585161792,74678247991840230,473954364916279312

%N a(n) = coefficient of x^n in A(x) such that: 1 = Sum_{n=-oo..+oo} x^n * (A(x) - x^(6*n+5))^(n-1).

%C Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^(6*n+5))^n, which holds formally for all y.

%H Paul D. Hanna, <a href="/A358965/b358965.txt">Table of n, a(n) for n = 0..200</a>

%F G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:

%F (1) 1 = Sum_{n=-oo..+oo} x^n * (A(x) - x^(6*n+5))^(n-1).

%F (2) x^5 = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(6*n^2) / (1 - x^(6*n-5)*A(x))^(n+1).

%F (3) A(x) = Sum_{n=-oo..+oo} x^(7*n+5)* (A(x) - x^(6*n+5))^(n-1).

%F (4) A(x) = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(6*n*(n-1)) / (1 - x^(6*n-5)*A(x))^(n+1).

%F (5) 0 = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(6*n*(n-1)) / (1 - x^(6*n-5)*A(x))^n.

%e G.f.: A(x) = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 729*x^5 + 3876*x^6 + 21321*x^7 + 120195*x^8 + 690816*x^9 + 4032807*x^10 + ...

%e where A = A(x) satisfies the doubly infinite sum

%e 1 = ... + x^(-2)*(A - x^(-7))^(-3) + x^(-1)*(A - x^(-1))^(-2) + (A - x^5)^(-1) + x*(A - x^11)^0 + x^2*(A - x^17) + x^3*(A - x^23)^2 + x^4*(A - x^29)^3 + ... + x^n * (A - x^(6*n+5))^(n-1) + ...

%e also,

%e A(x) = ... + x^72/(1 - x^(-23)*A)^(-2) - x^36/(1 - x^(-17)*A)^(-1) + x^12 - 1/(1 - x^(-5)*A) + 1/(1 - x*A)^2 - x^12/(1 - x^7*A)^3 + x^36/(1 - x^13*A)^4 - x^72/(1 - x^19*A)^5 + ... + (-1)^(n+1)*x^(6*n*(n-1))/(1 - x^(6*n-5)*A)^(n+1) + ...

%o (PARI) {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);

%o A[#A] = polcoeff( sum(n=-#A,#A, x^n * (Ser(A) - x^(6*n+5))^(n-1) ), #A-1) );A[n+1]}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A358961, A358962, A358963, A358964.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Dec 07 2022