The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A358964 a(n) = coefficient of x^n in A(x) such that: 1 = Sum_{n=-oo..+oo} x^n * (A(x) - x^(5*n+4))^(n-1). 6
 1, 2, 7, 30, 144, 728, 3879, 21338, 120301, 691482, 4037020, 23873308, 142702222, 860823760, 5233702949, 32038319854, 197302553658, 1221511228130, 7598234842024, 47464203317986, 297630203452010, 1872792573164662, 11821420702394153, 74834134991237178 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^(5*n+4))^n, which holds formally for all y. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..200 FORMULA G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies: (1) 1 = Sum_{n=-oo..+oo} x^n * (A(x) - x^(5*n+4))^(n-1). (2) x^4 = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(5*n^2) / (1 - x^(5*n-4)*A(x))^(n+1). (3) A(x) = Sum_{n=-oo..+oo} x^(6*n+4)* (A(x) - x^(5*n+4))^(n-1). (4) A(x) = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(5*n*(n-1)) / (1 - x^(5*n-4)*A(x))^(n+1). (5) 0 = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(5*n*(n-1)) / (1 - x^(5*n-4)*A(x))^n. EXAMPLE G.f.: A(x) = 1 + 2*x + 7*x^2 + 30*x^3 + 144*x^4 + 728*x^5 + 3879*x^6 + 21338*x^7 + 120301*x^8 + 691482*x^9 + 4037020*x^10 + ... where A = A(x) satisfies the doubly infinite sum 1 = ... + x^(-2)*(A - x^(-6))^(-3) + x^(-1)*(A - x^(-1))^(-2) + (A - x^4)^(-1) + x*(A - x^9)^0 + x^2*(A - x^14) + x^3*(A - x^19)^2 + x^4*(A - x^24)^3 + ... + x^n * (A - x^(5*n+4))^(n-1) + ... also, A(x) = ... + x^60/(1 - x^(-19)*A)^(-2) - x^30/(1 - x^(-14)*A)^(-1) + x^10 - 1/(1 - x^(-4)*A) + 1/(1 - x*A)^2 - x^10/(1 - x^6*A)^3 + x^30/(1 - x^11*A)^4 - x^60/(1 - x^16*A)^5 + ... + (-1)^(n+1)*x^(5*n*(n-1))/(1 - x^(5*n-4)*A)^(n+1) + ... PROG (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = polcoeff( sum(n=-#A, #A, x^n * (Ser(A) - x^(5*n+4))^(n-1) ), #A-1) ); A[n+1]} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A358961, A358962, A358963, A358965. Sequence in context: A358965 A368933 A187979 * A366055 A368932 A369160 Adjacent sequences: A358961 A358962 A358963 * A358965 A358966 A358967 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 07 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 12 04:22 EDT 2024. Contains 375842 sequences. (Running on oeis4.)