login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358936
Numbers k such that for some r we have phi(1) + ... + phi(k - 1) = phi(k + 1) + ... + phi(k + r), where phi(i) = A000010(i).
1
3, 4, 6, 38, 40, 88, 244, 578, 581, 602, 1663, 2196, 10327, 17358, 28133, 36163, 42299, 123556, 149788, 234900, 350210, 366321, 620478, 694950, 869880, 905807, 934286, 1907010, 2005592, 5026297, 7675637, 11492764, 12844691, 14400214, 15444216, 18798939, 20300872
OFFSET
1,1
COMMENTS
These numbers might be called "Euler totient function sequence balancing numbers", after the Behera and Panda link.
Numbers k such that A002088(k-1) + A002088(k) is a term of A002088.
LINKS
Ctibor O. Zizka, Table of k < 10^9, Terms 38..45 from David A. Corneth.
A. Behera and G. K. Panda, On the square roots of triangular numbers, The Fibonacci Quarterly, 37.2 (1999), 98-105.
EXAMPLE
k = 3:
phi(1) + phi(2) = phi(4) = 2.
Thus the balancing number k = 3 is a term. The balancer r is 1.
k = 4:
phi(1) + phi(2) + phi(3) = phi(5) = 4.
Thus the balancing number k = 4 is a term. The balancer r is 1.
phi(i) = A000010(i).
MATHEMATICA
With[{m = 30000}, phi = EulerPhi[Range[m]]; s = Accumulate[phi]; Select[Range[2, m], MemberQ[s, 2*s[[#]] - phi[[#]]] &]] (* Amiram Eldar, Dec 07 2022 *)
PROG
(Python)
from sympy import totient as phi
from itertools import count, islice
def f(n): # function we wish to "balance"
return phi(n)
def agen(): # generator of terms
s, sset, i = [0, f(1), f(1)+f(2)], set(), 3
for k in count(2):
target = s[k-1] + s[k]
while s[-1] < target:
fi = f(i); nexts = s[-1] + fi; i += 1
s.append(nexts); sset.add(nexts)
if target in sset: yield k
print(list(islice(agen(), 17))) # Michael S. Branicky, Dec 07 2022
(PARI) upto(n) = {my(res = List(), lefttotal = 1, righttotal = 2, k = 2, nplusr = 3, sumf = 1, oldfk = 1); for(i = 1, n, while(lefttotal > righttotal, nplusr++; righttotal+=f(nplusr) ); if(lefttotal == righttotal, listput(res, k)); lefttotal+=oldfk; k++; fk = f(k); righttotal-=fk; oldfk = fk ); res }
f(k) = eulerphi(k) \\ David A. Corneth, Dec 07 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ctibor O. Zizka, Dec 07 2022
EXTENSIONS
a(8)-a(15) from Amiram Eldar, Dec 07 2022
a(16)-a(37) from Michael S. Branicky, Dec 07 2022
STATUS
approved