%I #14 Dec 06 2022 19:33:37
%S 5,37,313,1253,4977,11253,31393,61409,125525,212785,407757,609361,
%T 1059497,1541005,2328621,3282329,5006113,6538721,9545621,12352197
%N The number of vertices in a Farey diagram of order (n,n).
%C See the linked references for further details.
%C The first diagram where not all edge points are connected is n = 3. For example a line connecting points (0,1/3) and (1/3,0) has equation 3*y - 6*x - 1 = 0, and as one of the x or y coefficients is greater than n (3 in this case) the line is not included.
%H Alain Daurat et al., <a href="https://doi.org/10.1016/j.cag.2008.11.001">About the frequencies of some patterns in digital planes. Application to area estimators</a>. Computers & graphics. 33.1 (2009), 11-20.
%H Daniel Khoshnoudirad, <a href="https://doi.org/10.2298/AADM150219008K">Farey lines defining Farey diagrams and application to some discrete structures</a>. Applicable Analysis and Discrete Mathematics. 9 (2015), 73-84.
%H Scott R. Shannon, <a href="/A358883/a358883.png">Image for n = 1</a>.
%H Scott R. Shannon, <a href="/A358883/a358883_1.png">Image for n = 2</a>.
%H Scott R. Shannon, <a href="/A358883/a358883_2.png">Image for n = 3</a>.
%H Scott R. Shannon, <a href="/A358883/a358883_3.png">Image for n = 4</a>.
%H Scott R. Shannon, <a href="/A358883/a358883_4.png">Image for n = 5</a>.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Farey_sequence">Farey sequence</a>.
%F a(n) = A358884(n) - A358882(n) + 1 by Euler's formula.
%Y Cf. A358882 (regions), A358884 (edges), A358885 (k-gons), A006842, A006843, A005728, A358887.
%Y See A358298 for definition of Farey diagram Farey(m,n).
%Y The Farey Diagrams Farey(m,n) are studied in A358298-A358307 and A358882-A358885, the Completed Farey Diagrams of order (m,n) in A358886-A358889.
%K nonn,more
%O 1,1
%A _Scott R. Shannon_ and _N. J. A. Sloane_, Dec 05 2022