login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358852
a(n) = n!*Sum_{m=0..floor(n/3)} 1/binomial(n-m,2*m).
1
1, 1, 2, 12, 32, 140, 1512, 6384, 44928, 749088, 4299840, 42546240, 974695680, 7061783040, 90598072320, 2640888230400, 23099489280000, 364696083763200, 12881138586624000, 132004210918809600, 2475855534329856000, 102587486964092928000, 1205260977814806528000
OFFSET
0,3
LINKS
FORMULA
E.g.f.: ((sqrt(x)*(x^3-2*x^2+x+1)*log((-x^(3/2)-1)/(x^(3/2)-1)))/2+(1-x)*x*log((1-x)^3*(x^2+x+1)))/(-x^3+2*x^2-x+1)^2+(3*x^2+1)/((x-1)*(x^2+x+1)*(x^3-2*x^2+x-1)).
PROG
(Maxima)
a(n):=n!*sum(1/(binomial(n-m, 2*m)), m, 0, floor(n/3));
(PARI) a(n) = n!*sum(m=0, n\3, 1/binomial(n-m, 2*m)); \\ Michel Marcus, Dec 03 2022
CROSSREFS
Cf. A358446.
Sequence in context: A212761 A102080 A000647 * A363661 A133577 A106185
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Dec 02 2022
STATUS
approved