login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the largest square dividing n^2 - 1.
0

%I #50 Mar 31 2023 07:28:37

%S 1,4,1,4,1,16,9,16,9,4,1,4,1,16,1,144,1,36,1,4,1,16,25,16,225,4,9,4,1,

%T 64,1,64,1,36,1,36,1,16,1,16,1,4,9,4,9,16,49,400,49,100,1,36,1,144,1,

%U 16,1,4,1,4,9,64,9,64,1,4,1,4,1,144,1,144,25,4

%N a(n) is the largest square dividing n^2 - 1.

%F a(n) = A008833(n^2 - 1).

%F a(n) = A008833(A005563(n-1)).

%F a(n) = A005563(n-1) / A068310(n).

%F a(n) = A005563(n-1) / A007913(A005563(n-1)).

%F a(n) = (n^2 - 1) / A068310(n).

%F a(n) = (n^2 - 1) / A007913(n^2 - 1).

%t f[p_, e_] := p^(2*Floor[e/2]); a[n_] := Times @@ (f @@@ FactorInteger[n^2 - 1]); Array[a, 100, 2] (* _Amiram Eldar_, Jan 04 2023 *)

%o (Python)

%o from sympy.ntheory.factor_ import core

%o def a(n):

%o return (n**2-1)//core(n**2-1)

%o (PARI) a(n) = (n^2-1)/core(n^2-1); \\ _Michel Marcus_, Feb 19 2023

%Y Cf. A007913, A008833, A068310, A005563.

%K nonn

%O 2,2

%A _Darío Clavijo_, Jan 04 2023