login
A358816
Numbers k such that d + k/d is prime for any unitary divisor d of k.
1
1, 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, 36, 40, 42, 52, 58, 60, 70, 72, 78, 82, 88, 100, 102, 108, 112, 130, 148, 162, 172, 190, 192, 196, 198, 210, 228, 232, 240, 250, 256, 268, 270, 280, 310, 312, 316, 330, 352, 358, 372, 378, 382, 388, 396, 400, 408, 432, 442, 448
OFFSET
1,2
COMMENTS
A unitary divisor d of k is a number d such that d|k and gcd(d, k/d) = 1.
A080715 is the subsequence of the squarefree terms of this sequence.
LINKS
Eric Weisstein's World of Mathematics, Unitary Divisor.
Wikipedia, Unitary divisor.
MATHEMATICA
q[n_] := AllTrue[Select[Divisors[n], #^2 < n && CoprimeQ[#, n/#] &], PrimeQ[# + n/#] &]; Select[Prime[Range[90]] - 1, q]
PROG
(PARI) is(n) = fordiv(n, d, if(d < n^2 && gcd(d, n/d) == 1 && !isprime(d+n/d), return(0))); return(1);
CROSSREFS
Subsequence of A006093.
Sequence in context: A075728 A146886 A006093 * A127965 A117891 A262935
KEYWORD
nonn
AUTHOR
Amiram Eldar, Dec 02 2022
STATUS
approved