Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Dec 06 2022 10:03:32
%S 0,1,3,15,31,45,143,81,233,151,71,353,141,537,457,1663,209,391,707,
%T 1081,1877,1161,3807,2361,5657,1399,2783,2967,3149,2923,5103,1109,
%U 11937,7211,2341,9311,6837,10303,24933,8273,11821,9931,11191,6377,14007,48111,12821,43967,27563,17171,38157,16859
%N a(n) is the least nonnegative integer k such that (k^2 + prime(n)^2)/2 is prime but (k^2 + prime(i)^2)/2 is not prime for i < n.
%F A358790((a(n)-1)/2) = prime(n) for n > 1.
%e a(4) = 15 because prime(4) = 7 and (15^2 + 7^2)/2 = 137 is prime while (15^2 + p^2)/2 is not prime for primes p < 7, and 15 is the least number that works.
%p g:= proc(n) local s, p;
%p s:= n^2; p:= 2;
%p do
%p p:= nextprime(p);
%p if isprime((s+p^2)/2) then return p fi
%p od
%p end proc:
%p N:= 100: # for a(1)..a(N)
%p M:= ithprime(N): V:= Vector(M,-1):
%p count:= 1: V[2]:= 0:
%p for n from 1 by 2 while count < N do
%p v:= g(n); if v <= M and V[v] = -1 then V[v]:= n; count:= count+1 fi;
%p od:
%p seq(V[ithprime(i)], i=1..N);
%t a[n_] := Module[{p = Prime[n], k = 0}, While[! PrimeQ[(k^2 + p^2)/2] || AnyTrue[Prime[Range[n - 1]], PrimeQ[(k^2 + #^2)/2] &], k++]; k]; Array[a, 50] (* _Amiram Eldar_, Dec 01 2022 *)
%Y Cf. A358790.
%K nonn
%O 1,3
%A _J. M. Bergot_ and _Robert Israel_, Dec 01 2022