login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Zeroless pandigital numbers whose square has each digit 1 to 9 twice.
0

%I #24 Dec 01 2022 17:21:03

%S 345918672,351987624,359841267,394675182,429715863,439516278,

%T 487256193,527394816,527498163,528714396,572493816,592681437,

%U 729564183,746318529,749258163,754932681,759142683,759823641,762491835,783942561,784196235,845691372,891357624,914863275,915786423,923165487,928163754,976825431

%N Zeroless pandigital numbers whose square has each digit 1 to 9 twice.

%e 345918672 is a term since its square 119659727638243584 contains all digits 1..9 twice each.

%p R:= NULL:

%p for t in combinat:-permute([$1..9]) do

%p x:= add(t[i]*10^(i-1),i=1..9);

%p if sort(convert(x^2,base,10)) = [seq(i$2,i=1..9)] then

%p R:= R, x

%p fi

%p od:

%p sort([R]); # _Robert Israel_, Nov 27 2022

%o (Python)

%o from itertools import permutations as per

%o a=[]

%o for n in [int(''.join(d)) for d in per('123456789', 9)]:

%o if all(str(n**2).count(d) ==2 for d in '123456789'):

%o a.append(n)

%o print(a)

%Y Cf. A050289, A199630.

%K nonn,base,fini,full

%O 1,1

%A _Zhining Yang_, Nov 27 2022