Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Jan 14 2023 08:44:48
%S 3,12,42,125,608,2427,10081,43568,197823,873432,3978580,18159630,
%T 83753054,387670103,1811802273,8451565541,39790817677
%N Number of n-digit primes whose digits are all odd.
%F a(n) = A358685(n) - A358685(n-1).
%e a(2) = 12 as there are 12 2-digit primes whose digits are all odd: 11, 13, 17, 19, 31, 37, 53, 59, 71, 73, 79, 97.
%t Length[Select[Prime[Range[PrimePi[10^(n - 1)], PrimePi[10^n]]], And @@ OddQ[IntegerDigits[#]] &]]
%o (Python)
%o from sympy import primerange
%o def a(n):
%o num=0
%o for f in range(1,10,2):
%o p=list(primerange(f*10**(n-1),(f+1)*10**(n-1)))
%o num+=sum(1 for k in p if all(int(d) %2 for d in str(k)))
%o return(num)
%o print ([a(n) for n in range(1,8)])
%o (Python)
%o from sympy import isprime
%o from itertools import count, islice, product
%o def a(n):
%o c = 0 if n > 1 else 1
%o for p in product("13579", repeat=n-1):
%o s = "".join(p)
%o for last in "1379":
%o if isprime(int(s+last)): c += 1
%o return c
%o print([a(n) for n in range(1, 10)]) # _Michael S. Branicky_, Nov 27 2022
%Y Cf. A030096, A358685.
%K base,nonn,more
%O 1,1
%A _Zhining Yang_, Nov 26 2022
%E a(10)-a(14) from _Michael S. Branicky_, Nov 26 2022
%E a(15) from _Zhining Yang_, Dec 21 2022
%E a(16)-a(17) from _Martin Ehrenstein_, Dec 24 2022