login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Pointwise product of the arithmetic derivative and the primorial base exp-function.
13

%I #24 Jan 11 2023 15:58:51

%S 0,0,3,6,36,18,25,10,180,180,315,90,400,50,675,1200,7200,450,2625,250,

%T 9000,7500,14625,2250,27500,12500,28125,101250,180000,11250,217,14,

%U 1680,588,1197,1512,2100,70,2205,3360,21420,630,7175,350,25200,40950,39375,3150,98000,24500,118125,105000,441000

%N Pointwise product of the arithmetic derivative and the primorial base exp-function.

%H Antti Karttunen, <a href="/A358669/b358669.txt">Table of n, a(n) for n = 0..11550</a>

%H Antti Karttunen, <a href="/A358669/a358669.txt">Data supplement: n, a(n) computed for n = 0..60060</a>

%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>

%F a(n) = A003415(n) * A276086(n).

%F From _Antti Karttunen_, Jan 09 2023: (Start)

%F a(n) = A327858(n) * A359423(n).

%F For all n >= 0, A059841(a(n)) = A152822(n).

%F For all n >= 1, 1-A152822(a(n)) = A353558(n).

%F For all n >= 0, A121262(a(n)) = A358680(n).

%F (End)

%o (PARI)

%o A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));

%o A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };

%o A358669(n) = (A003415(n)*A276086(n));

%Y Cf. A003415, A059841, A121262, A152822, A276086, A327858, A353558, A358680, A358765 (= a(n) mod 60), A359423, A359603 [Dirichlet inverse of 1+a(n)].

%Y Cf. A016825 (positions of odd terms), A042965 (of even terms), A235992 (of multiples of 4), A067019 (of terms of the form 4k+2), A358748 (of the form 4k+1), A358749 (of the form 4k+3).

%K nonn

%O 0,3

%A _Antti Karttunen_, Dec 05 2022