%I #28 Dec 03 2022 23:46:23
%S 1,2,1,2,1,1,4,3,2,1,2,1,1,1,1,4,3,2,2,2,1,4,3,3,2,2,1,1,8,7,6,5,4,3,
%T 2,1,2,1,1,1,1,1,1,1,1,4,3,2,2,2,2,2,2,2,1,4,3,3,2,2,2,2,2,2,1,1,8,7,
%U 6,5,4,4,4,4,4,3,2,1,4,3,3,3,3,2,2,2,2,1,1,1,1
%N Triangle read by rows where row n is reversed partial sums of row n of the Sierpinski triangle (A047999).
%C Row reversal of A261363 (which is the main entry).
%C These sums can be formed by taking A047999 as a lower triangular matrix times an all-1's lower triangular matrix.
%F T(n,k) = Sum_{i=k..n} A047999(n,i).
%e Triangle begins:
%e k=0 1 2 3 4 5 6 7 8
%e n=0: 1;
%e n=1: 2, 1;
%e n=2: 2, 1, 1;
%e n=3: 4, 3, 2, 1;
%e n=4: 2, 1, 1, 1, 1;
%e n=5: 4, 3, 2, 2, 2, 1;
%e n=6: 4, 3, 3, 2, 2, 1, 1;
%e n=7: 8, 7, 6, 5, 4, 3, 2, 1;
%e n=8: 2, 1, 1, 1, 1, 1, 1, 1, 1;
%e For n=5, row 5 here and row 5 of A047999 are:
%e row 4, 3, 2, 2, 2, 1
%e sums of 1, 1, 0, 0, 1, 1
%Y Cf. A047999, A261363 (rows reversed).
%Y Cf. A001316 (column k=0), A000012 (main diagonal).
%K nonn,tabl,easy
%O 0,2
%A _Gary W. Adamson_, Nov 21 2022