%I #7 Nov 26 2022 09:59:35
%S 1,1,2,1,4,12,13,6,1,36,132,193,144,58,12,1,576,2400,4180,3980,2273,
%T 800,170,20,1,14400,65760,129076,143700,100805,46710,14523,3000,395,
%U 30,1,518400,2540160,5450256,6787872,5482456,3034920,1184153,328986,64743,8820,791,42,1
%N Irregular triangle read by rows. Coefficients of the polynomials (-1)^n*binomial(-x - 1, -x - n - 1) * binomial(n + x, x) * (n!)^2 in ascending order of powers.
%F p(n, x) = (-1)^n*(-x - 1)!*(n + x)!/((-x - n - 1)!*x!).
%F p(n, x) = (-1)^n*Pochhammer(-x - n, n) * Pochhammer(1 + x, n).
%e Polynomials p(n, x) begin:
%e [0] 1;
%e [1] -(-x - 1)*(x + 1);
%e [2] (-x - 2)*(-x - 1)*(x + 1)*(x + 2);
%e [3] -(-x - 3)*(-x - 2)*(-x - 1)*(x + 1)*(x + 2)*(x + 3);
%e [4] (-x - 4)*(-x - 3)*(-x - 2)*(-x - 1)*(x + 1)*(x + 2)*(x + 3)*(x + 4);
%e .
%e Triangle T(n, k) begins:
%e [0] 1;
%e [1] 1, 2, 1;
%e [2] 4, 12, 13, 6, 1;
%e [3] 36, 132, 193, 144, 58, 12, 1;
%e [4] 576, 2400, 4180, 3980, 2273, 800, 170, 20, 1;
%e [5] 14400, 65760, 129076, 143700, 100805, 46710, 14523, 3000, 395, 30, 1;
%p p := (n, x) -> (-1)^n*binomial(-x - 1, -x - n - 1)*binomial(n + x, x)*(n!)^2:
%p for n from 0 to 7 do seq(coeff(expand(p(n, x)), x, k), k = 0..2*n) od;
%Y Cf. A001044 (row sums), A000007 (alternating row sums).
%K nonn,tabf
%O 0,3
%A _Peter Luschny_, Nov 26 2022