login
a(n) is the maximal determinant of an n X n matrix using the integers 0 to n^2 - 1.
0

%I #14 Nov 21 2022 09:38:14

%S 1,0,6,332,36000,6313388,1765146660,731664377274

%N a(n) is the maximal determinant of an n X n matrix using the integers 0 to n^2 - 1.

%C 427402723914150 <= a(8) <= 427505414757161, 337815614862033534 <= a(9) <= 337888181610225000, 349880703121691699788 <= a(10) <= 349947469107433415221, with upper bounds from corollary 2 of Sigg (2018). - _Hugo Pfoertner_, Nov 21 2022

%H Markus Sigg, <a href="https://arxiv.org/abs/1804.02897">Gasper's determinant theorem, revisited</a>, arXiv:1804.02897 [math.CO], 9 Apr 2018.

%e a(3) = 332:

%e [5, 7, 2;

%e 1, 3, 8;

%e 6, 0, 4]

%Y Cf. A085000 (integers 1 to n^2), A358486 (minimal permanent), A358487 (maximal permanent).

%K nonn,hard,more

%O 0,3

%A _Stefano Spezia_, Nov 18 2022

%E a(4)-a(6) from _Hugo Pfoertner_, Nov 19 2022

%E a(7) from _Hugo Pfoertner_, Nov 21 2022