%I #18 Nov 18 2022 10:13:45
%S 1,2,2,3,3,4,4,5,6,7,8,8,8,10,14,17,23,30,38,49,62,77,94,110,129,149,
%T 172,195,218,241,266,293,323,356,389,424,461,500,545,593,641,688,737,
%U 787,839,896,957,1021,1085,1152,1219,1291,1368,1447,1527,1611,1697,1788,1879,1974,2074,2181,2290,2401,2519
%N Number of 1's that appeared by n-th step when constructing A030717.
%H Michael De Vlieger, <a href="/A358466/b358466.txt">Table of n, a(n) for n = 1..1024</a>
%t nn = 94; c[_] = 0; k = a[1] = c[1] = 1; Accumulate@ Prepend[Reap[Do[w = Union@ Array[a, k]; t = 0; Do[Set[a[j + k], c[w[[j]]]]; If[a[j + k] == 1, t++], {j, Length[w]}]; Do[c[a[j + k]]++, {j, Length[w]}]; k += Length[w]; Sow[t], {n, nn}]][[-1, -1]], 1] (* _Michael De Vlieger_, Nov 18 2022 *)
%o (Ruby)
%o def A(k, n)
%o a = []
%o ary = [1]
%o n.times{
%o a << ary.count(k)
%o ary += ary.uniq.sort.map{|i| ary.count(i)}
%o }
%o a
%o end
%o p A(1, 100)
%Y Partial sums of A358467.
%Y Cf. A030717, A030723, A358468.
%K nonn
%O 1,2
%A _Seiichi Manyama_, Nov 18 2022