login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of reducible monic quintic polynomials (x^5 + r*x^4 + s*x^3 + t*x^2 + u*x + v) with integer coefficients bounded by naïve height n (abs(r), abs(s), abs(t), abs(u), abs(v) <= n).
2

%I #26 Jan 02 2023 09:01:48

%S 139,1313,5359,15365,34229,68385,120421,200839,312057,468827,669591,

%T 943175,1274089,1701441,2216841,2856379,3594651,4510437,5541135,

%U 6788823,8195941,9845089,11670925,13842429,16191555

%N a(n) is the number of reducible monic quintic polynomials (x^5 + r*x^4 + s*x^3 + t*x^2 + u*x + v) with integer coefficients bounded by naïve height n (abs(r), abs(s), abs(t), abs(u), abs(v) <= n).

%o (PARI)

%o { a(n) = \\ A358400

%o my( ct = 0 );

%o for (c1 = -n, n,

%o for (c2 = -n, n,

%o for (c3 = -n, n,

%o for (c4 = -n, n,

%o for (c5 = -n, n,

%o if ( ! polisirreducible( Pol([1,c1,c2,c3,c4,c5]) ), ct += 1 );

%o ); ); ); ); );

%o return( ct );

%o }

%o vector(7, n, a(n) )

%o \\ _Joerg Arndt_, Dec 05 2022

%Y Cf. A358398, A358399, A067274.

%K nonn,more

%O 1,1

%A _Lorenz H. Menke, Jr._, Nov 13 2022