login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358305
Triangle read by rows: T(n,k) (n>=0, 0 <= k <= n) = number of decreasing lines defining the Farey diagram Farey(n,k) of order (n,k).
0
0, 0, 2, 0, 5, 10, 0, 9, 19, 32, 0, 14, 27, 47, 66, 0, 20, 40, 68, 96, 134, 0, 27, 51, 85, 118, 167, 204, 0, 35, 68, 112, 156, 217, 267, 342, 0, 44, 82, 137, 187, 261, 318, 408, 482, 0, 54, 103, 166, 229, 317, 384, 490, 581, 692, 0, 65, 120, 196, 266, 366, 441, 564, 664, 794, 904
OFFSET
0,3
LINKS
Daniel Khoshnoudirad, Farey lines defining Farey diagrams and application to some discrete structures, Applicable Analysis and Discrete Mathematics, 9 (2015), 73-84; doi:10.2298/AADM150219008K. See Lemma 1, |DFD(m,n)|.
EXAMPLE
The full array T(n,k), n >= 0, k>= 0, begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, ...
0, 5, 10, 19, 27, 40, 51, 68, 82, 103, 120, 145, ...
0, 9, 19, 32, 47, 68, 85, 112, 137, 166, 196, 235, ...
0, 14, 27, 47, 66, 96, 118, 156, 187, 229, 266, ...
0, 20, 40, 68, 96, 134, 167, 217, 261, 317, 366, ...
0, 27, 51, 85, 118, 167, 204, 267, 318, 384, 441, ...
MAPLE
A005728 := proc(n) 1+add(numtheory[phi](i), i=1..n) ; end proc: # called F_n in the paper
Amn:=proc(m, n) local a, i, j; # A331781 or equally A333295. Diagonal is A018805.
a:=0; for i from 1 to m do for j from 1 to n do
if igcd(i, j)=1 then a:=a+1; fi; od: od: a; end;
DFD:=proc(m, n) local d, t1, u, v; global A005728, Amn;
t1:=0; for u from 1 to m do for v from 1 to n do
d:=igcd(u, v); if d>=1 then t1:=t1 + (u+v)*numtheory[phi](d)/d; fi; od: od:
t1; end;
for m from 0 to 8 do lprint([seq(DFD(m, n), n=0..20)]); od:
MATHEMATICA
T[n_, k_] := Sum[d = GCD[u, v]; If[d >= 1, (u+v)*EulerPhi[d]/d, 0], {u, 1, n}, {v, 1, k}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 18 2023 *)
CROSSREFS
Cf. A358298.
The Farey Diagrams Farey(m,n) are studied in A358298-A358307 and A358882-A358885, the Completed Farey Diagrams of order (m,n) in A358886-A358889.
Sequence in context: A344786 A011014 A002976 * A292590 A080901 A137260
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved