login
Array read by antidiagonals: T(n,k) = n^3*k*3*(n+k)^2, n>=1, k>=1.
1

%I #13 Mar 19 2023 20:12:38

%S 4,72,72,432,1024,432,1600,5400,5400,1600,4500,18432,26244,18432,4500,

%T 10584,49000,84672,84672,49000,10584,21952,110592,216000,262144,

%U 216000,110592,21952,41472,222264,472392,648000,648000,472392,222264,41472,72900,409600,926100,1382400,1562500,1382400,926100,409600,72900

%N Array read by antidiagonals: T(n,k) = n^3*k*3*(n+k)^2, n>=1, k>=1.

%H Daniel Khoshnoudirad, <a href="http://www.doiserbia.nb.rs/img/doi/1452-8630/2015/1452-86301500008K.pdf">Farey lines defining Farey diagrams and application to some discrete structures</a>, Applicable Analysis and Discrete Mathematics, 9 (2015), 73-84; doi:10.2298/AADM150219008K.

%e The full array T(n,k), n>=0, k>=0, begins:

%e 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 0, 4, 72, 432, 1600, 4500, 10584, 21952, 41472, ...

%e 0, 72, 1024, 5400, 18432, 49000, 110592, 222264, ...

%e 0, 432, 5400, 26244, 84672, 216000, 472392, 926100, ...

%e 0, 1600, 18432, 84672, 262144, 648000, 1382400, ...

%e 0, 4500, 49000, 216000, 648000, 1562500, 3267000, ...

%e ...

%Y Cf. A358292-A358295.

%K nonn,tabl

%O 1,1

%A _N. J. A. Sloane_, Dec 03 2022