Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Nov 07 2022 02:10:35
%S 1,16,144,256,3600,1296,2304,65536,129600,16777216,32400,20736,57600,
%T 331776,589824,4294967296,6350400,1099511627776,150994944,810000,
%U 1587600,1679616,518400,5308416,2822400,84934656,8294400,26873856,14745600,21743271936,38654705664
%N a(n) is the least number with exactly n noninfinitary square divisors.
%C a(n) is the least number k such that A358261(k) = n.
%C Since A358261(k) depends only on the prime signature of k, all the terms of this sequence are in A025487.
%H Amiram Eldar, <a href="/A358262/b358262.txt">Table of n, a(n) for n = 0..50</a>
%e a(1) = 16 since 16 is the least number with exactly one noninfinitary divisor, 4.
%t f1[p_, e_] := 1 + Floor[e/2]; f2[p_, e_] := 2^DigitCount[If[OddQ[e], e - 1, e], 2, 1]; f[1] = 0; f[n_] := Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[15, 2*10^7]
%o (PARI) s(n) = {my(f = factor(n)); prod(i=1, #f~, 1+f[i,2]\2) - prod(i=1, #f~, 2^hammingweight(if(f[i,2]%2, f[i,2]-1, f[i,2])))};
%o lista(len, nmax) = {my(v = vector(len), c = 0, n = 1, i); while(c < len && n < nmax, i = s(n) + 1; if(i <= len && v[i] == 0, c++; v[i] = n); n++); v};
%Y Cf. A025487, A358261, A358263.
%Y Similar sequences: A005179 (all divisors), A038547 (odd divisors), A085629 (coreful divisors), A130279 (square), A187941 (even), A309181 (non-unitary), A340232 (bi-unitary), A340233 (exponential), A357450 (odd square), A358252 (non-unitary square).
%K nonn
%O 0,2
%A _Amiram Eldar_, Nov 06 2022