login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Inverse Möbius transform of A181819, prime shadow function.
1

%I #15 Oct 23 2023 02:02:17

%S 1,3,3,6,3,9,3,11,6,9,3,18,3,9,9,18,3,18,3,18,9,9,3,33,6,9,11,18,3,27,

%T 3,29,9,9,9,36,3,9,9,33,3,27,3,18,18,9,3,54,6,18,9,18,3,33,9,33,9,9,3,

%U 54,3,9,18,42,9,27,3,18,9,27,3,66,3,9,18,18,9,27,3,54,18,9,3,54,9,9,9,33,3,54

%N Inverse Möbius transform of A181819, prime shadow function.

%C Multiplicative and dependent only on the prime signature (A046523) because also A181819 is.

%H Michael De Vlieger, <a href="/A358223/b358223.txt">Table of n, a(n) for n = 1..16384</a>

%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.

%F a(n) = Sum_{d|n} A181819(d).

%F Multiplicative with a(p^e) = 1 + Sum_{k=1..e} prime(k) = A014284(e+1). - _Amiram Eldar_, Oct 23 2023

%t f[n_] := f[n] = Times @@ Prime@ FactorInteger[n][[All, -1]]; Array[DivisorSum[#, f] - 1 &, 90] (* _Michael De Vlieger_, Nov 30 2022 *)

%o (PARI)

%o A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));

%o A358223(n) = sumdiv(n,d,A181819(d));

%Y Cf. A014284, A046523, A181819.

%K nonn,mult

%O 1,2

%A _Antti Karttunen_, Nov 30 2022