Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Nov 08 2022 07:57:07
%S 1,1,2,2,4,4,6,6,9,9,13,13,18,18,24,24,31,31,39,39,50,50,62,62,77,77,
%T 93,93,112,112,134,134,159,159,187,187,218,218,252,252,292,292,335,
%U 335,384,384,436,436,494,494,558,558,628,628,704,704,786,786,874,874,972,972
%N Number of ways of making change for n cents using coins of 1, 2, 4, 10 and 20 cents.
%C Number of ways of making change for 50n Colombian pesos using coins of 50, 100, 200, 500 and 1000 pesos.
%C Number of partitions of n into parts 1,2,4,10 and 20.
%H <a href="/index/Mag#change">Index entries for sequences related to making change.</a>
%H <a href="/index/Rec#order_37">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1, -1, 1, -1, -1, 1, 0, 0, 1, -1, -1, 1, -1, 1, 1, -1, 0, 0, 1, -1, -1, 1, -1, 1, 1, -1, 0, 0, -1, 1, 1, -1, 1, -1, -1, 1).
%F G.f.: 1/((1 - x) (1 - x^2) (1 - x^4) (1 - x^10) (1 - x^20)).
%F a(n) = A000064(floor(n/2)).
%F a(n) ~ n^4/38400.
%e a(5)=4 counts the ways of making change for 5 cents, these are (1,1,1,1,1), (1,1,1,2), (1,2,2), (1,4).
%t A[x_]:=1/((1 - x) (1 - x^2) (1 - x^4) (1 - x^10) (1 - x^20));
%t a[n_]:=SeriesCoefficient[A[x],{x,0,n}]
%Y Cf. A000064, A001310.
%K nonn,easy
%O 0,3
%A _Daniel Checa_, Nov 03 2022