login
A358202
Lower twin primes p such that 6*p-1 and 6*p+1 are twin primes and (p+1)/6 is prime.
1
17, 137, 23537, 92957, 157217, 318677, 326657, 440177, 510617, 521537, 558497, 577937, 617717, 651017, 661097, 861437, 969257, 1093997, 1152077, 1168337, 1177157, 1260317, 1299917, 1356077, 1463177, 1514657, 1600097, 1617437, 1768757, 1773977, 1957937, 2065577, 2271497, 2335637, 2382557, 2450597
OFFSET
1,1
LINKS
EXAMPLE
a(2) = 137 is a term because 137 and 139 are twin primes, 6*137-1 = 821 and 6*137+1 = 823 are twin primes, and (137+1)/6 = 23 is a prime.
MAPLE
P:= select(isprime, {seq(i, i=5..2*10^7, 2)}):
T:= P intersect map(`-`, P, 2):
R:=T intersect map(t -> (t+1)/6, T):
sort(convert(select(t -> isprime((t+1)/6), R), list));
MATHEMATICA
Select[Prime[Range[180000]], PrimeQ[# + 2] && PrimeQ[6*# - 1] && PrimeQ[6*# + 1] && PrimeQ[(# + 1)/6] &] (* Amiram Eldar, Nov 03 2022 *)
Select[Prime[Range[180000]], AllTrue[{#+2, 6#+1, 6#-1, (#+1)/6}, PrimeQ]&] (* Harvey P. Dale, Jan 29 2023 *)
CROSSREFS
Intersection of A060213 and A176131.
Sequence in context: A120784 A357550 A271395 * A277387 A099922 A298626
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Nov 03 2022
STATUS
approved