Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Sep 11 2024 00:34:35
%S 36,28,8,36,52,4,16,9,63,36,68,8,32,9,43,16,76,72,27,1,108,16,64,36,
%T 68,4,28,89,36,27,4,69,71,27,29,20,72,77,47,32,128,36,36,136,8,56,25,
%U 91,188,8,188,92,9,99,4,40,144,28,109,62,49,64,49,18,97,11,81
%N First differences of A286708.
%C Consider the sequence of powerful numbers A001694, superset of A246547, the sequence of composite prime powers. Let s = A001694(k) such that omega(s) > 1 be followed by t = A001694(k+1) such that omega(t) = 1.
%C Since A286708 = A001694 \ A246547, prime powers t are missing in A286708. We consider s = A286708(j) and note that the difference A286708(j+1) - A286708(j) > A001694(k+1) - A001694(k).
%C Therefore we see a subset S containing s in A286708 that plots "out of place" with respect to the complementary subset R = A286708 \ S; some of this subset S exceeds the maxima of R in the scatterplot of this sequence. The plot of the R resembles the scatterplot of A001694.
%H Michael De Vlieger, <a href="/A358173/b358173.txt">Table of n, a(n) for n = 1..10000</a>
%H Michael De Vlieger, <a href="/A358173/a358173.png">Scatterplot of a(n)</a>, n = 1..2^16, highlighting in red terms s that in A001694 are succeeded by a prime power t.
%e The number 36 is the smallest powerful number that is not a prime power; the next powerful number that is not a prime power is 72, and their difference is 36, hence a(1) = 36.
%t With[{nn = 2^25}, Differences@ Select[Rest@ Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], ! PrimePowerQ[#] &]]
%o (Python)
%o from math import isqrt
%o from sympy import integer_nthroot, primepi, mobius
%o def A358173(n):
%o def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
%o def bisection(f, kmin=0, kmax=1):
%o while f(kmax) > kmax: kmax <<= 1
%o while kmax-kmin > 1:
%o kmid = kmax+kmin>>1
%o if f(kmid) <= kmid:
%o kmax = kmid
%o else:
%o kmin = kmid
%o return kmax
%o def f(x):
%o c, l = n+x+1+sum(primepi(integer_nthroot(x, k)[0]) for k in range(2, x.bit_length())), 0
%o j = isqrt(x)
%o while j>1:
%o k2 = integer_nthroot(x//j**2,3)[0]+1
%o w = squarefreepi(k2-1)
%o c -= j*(w-l)
%o l, j = w, isqrt(x//k2**3)
%o c -= squarefreepi(integer_nthroot(x,3)[0])-l
%o return c
%o return -(a:=bisection(f,n,n))+bisection(lambda x:f(x)+1,a,a) # _Chai Wah Wu_, Sep 10 2024
%Y Cf. A001694, A053707, A076446, A246547, A286708.
%K nonn
%O 1,1
%A _Michael De Vlieger_, Nov 01 2022