login
A358091
Triangle read by rows. Coefficients of the polynomials P(n, x) = 2^(n-2)*(3*n-1)* hypergeometric([-3*n, 1 - n, -n + 4/3], [-n, -n + 1/3], x). T(n, k) = [x^k] P(n, x).
2
1, 5, -6, 16, -60, 48, 44, -288, 660, -440, 112, -1056, 4032, -7280, 4368, 272, -3360, 17952, -52224, 81600, -45696, 640, -9792, 67200, -267520, 656640, -930240, 496128, 1472, -26880, 225216, -1133440, 3740352, -8160768, 10767680, -5537664
OFFSET
1,2
FORMULA
P(n, -1/2) = A062236(n).
(-1)^n*P(n + 1, 1) = A000309(n).
EXAMPLE
[1] 1;
[2] 5, -6;
[3] 16, -60, 48;
[4] 44, -288, 660, -440;
[5] 112, -1056, 4032, -7280, 4368;
[6] 272, -3360, 17952, -52224, 81600, -45696;
[7] 640, -9792, 67200, -267520, 656640, -930240, 496128;
[8] 1472, -26880, 225216, -1133440, 3740352, -8160768, 10767680, -5537664;
PROG
(SageMath)
def P(n):
h = 2^(n-2)*(3*n-1)*hypergeometric([-3*n, 1 - n, -n + 4/3], [-n, -n + 1/3], x)
return h.series(x, n+1).polynomial(SR)
for n in range(1, 9): print(P(n).list())
# To evaluate the polynomials use:
def p(n, t): return Integer(P(n)(x=t).n())
# For example the next statements yield A062236 and A000309.
print([p(n, -1/2) for n in range(1, 21)])
print([(-1)^n*p(n + 1, 1) for n in range(0, 22)])
CROSSREFS
Sequence in context: A034454 A246715 A185508 * A257338 A059013 A355321
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Oct 28 2022
STATUS
approved