login
A358087
Primes that can be written as 2^x - p where p is a prime and x is a multiple of p.
2
2, 5, 61, 509, 1019, 4093, 8179, 524269, 1048571, 16777213, 2596148429267413814265248164610011, 1361129467683753853853498429727072845819, 1427247692705959881058285969449495136382746619, 1427247692705959881058285969449495136382746621, 45671926166590716193865151022383844364247891937
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 61 is a term because 61 = 2^6 - 3 where 61 and 3 are prime and 6 is divisible by 3.
MAPLE
R:= NULL: count:= 0:
for k from 1 while count < 20 do
P:= sort(convert(numtheory:-factorset(k), list), `>`);
for p in P do
x:= 2^k-p;
if isprime(x) then R:= R, x; count:= count+1; fi
od od:
R;
CROSSREFS
Contains A057678.
Cf. A358079.
Sequence in context: A062642 A294528 A363335 * A093484 A375531 A250195
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Oct 30 2022
STATUS
approved