login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358078
a(n) is the number of squarefree semiprimes <= 2^n.
0
0, 0, 0, 1, 4, 7, 18, 37, 76, 149, 293, 575, 1106, 2162, 4161, 8068, 15604, 30181, 58449, 113179, 219587, 425951, 827393, 1608250, 3128647, 6090677, 11867571, 23139485, 45148817, 88155104, 172231561, 336713062, 658655523, 1289140675, 2524520079, 4946303842
OFFSET
0,5
COMMENTS
I.e., number of numbers <= 2^n that are the product of two distinct primes.
EXAMPLE
a(5) = 7 because there are 7 squarefree semiprimes <= 2^5 = 32:
2*3 = 6, 2*5 = 10, 2*7 = 14, 2*11 = 22, 2*13 = 26,
3*5 = 15, 3*7 = 21.
a(6) = 18 because there are 18 squarefree semiprimes <= 2^6 = 64:
2*{3,5,7,11,13,17,19,23,29,31} = {6,10,14,22,26,34,38,46,58,62},
3*{5,7,11,13,17,19} = {15,21,33,39,51,57},
5*{7,11} = {35,55}.
MATHEMATICA
Reap[Do[Do[If[And[PrimeOmega[#] == 2, SquareFreeQ[#]], c++] &[k], {k, 2^(n - 1) + 1, 2^n}]; Sow[c], {n, 0, 16}]][[-1, -1]] (* Michael De Vlieger, Oct 30 2022 *)
Module[{nn=22, sfsp}, sfsps=Table[If[PrimeOmega[n]==2&&SquareFreeQ[n], 1, 0], {n, 2^nn}]; Table[ Total[ Take[sfsps, 2^x]], {x, 0, nn}]] (* Harvey P. Dale, Apr 02 2023 *)
PROG
(PARI) a(n) = sum(k=1, 2^n, bigomega(k)==2&&issquarefree(k)); \\ Michel Marcus, Oct 30 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Jon E. Schoenfield, Oct 29 2022
STATUS
approved